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19 ABSTRACT (Continued)

kinetic phenomena occurring in the bearing. The technology developed will
significantly improve the utilization of dynamic bearing analysis codes, by
providing better understanding of bearing operating characteristics, leading to
more reliable and cost effective rolling element bearing designs. Proposed future
research will result in extending the software to provide complete three-
dimensional graphics and to incorporate new informational displays and additional
analysis capabilities.
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1.0 INTRODUCTION

Successful design of high speed Rolling Element Bearings depends on a thorough
understanding of the complicated interactions of rolling elements, cage, and races. State-of-
the-art dynamic bearing simulations performed with software such as ADORE©(1) (Advanced
Dynamics of Rolling Elements) are capable of predicting the complex dynamic behavior of the
bearing components. Dynamic simulation lets the user study the effects of changing various
bearing design parameters in order to optimize the operating performance of the bearing.
However, the tremendous amount of output data generated by the simulation makes it very
difficult to assimilate and evaluate results from analysis. Plots of specific parameters such as
acceleration, velocity and position are generated for each rolling element, race, and the cage.
These plots are useful for interpreting the analysis. However, full understanding of bearing
operational characteristics depends on visualizing the motion and interactions of all the bearing
elements simultaneously. Traditionally, the designer has been required to construct a mental
image of the component interactions from the various plots and numerical values output by the
simulation. This process is difficult and time consuming, thus restricting utilization of the
valuable results obtained through dynamic simulation.

The objective of this study was to investigate the feasibility of developing software
capable of presenting results from dynamic analysis in the form of a computer animation.
Animation of the operating bearing produces a composite view of all of the bearing components
and their motion. The software developed during this effort has dramatically shown how this
tool can greatly enhance the utilization of bearing dynamics codes and allow bearing designers to
more quickly and thoroughly optimize bearing design parameters. The animation code developed
imports data from dynamic analysis petformed with the ADORE software and displays the
reslt!s as a movie, Thp movie c n b. reviewed step-by-step or as an animation.

The software developed to demonstrate the feasibility of this concept is limited to
reviewing results for analysis of ball bearings and the view of the animation is limited to an
axial perspective. Future work has been proposed that will result in broadening the scope of
applications and capabilities for the animation software as well as addressing additional bearing
design concerns which are not addressed by dynamic analysis alone. The current software was
developed with three-dimensional modeling of the rolling elements and two-dimensional
displays for the races and cage. The proposed development includes modeling multiple bearing
types with all components displayed using three-dimensional graphics. The designer will have

1 ADORE Copyright© 1983, Pradeep K. Gupta, Inc., The Computer Program ADORE is a
Proprietary Software of Pradeep K. Gupta, Inc. (PKG).
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the option of moving the viewing perspective of the bearing to any point in space. Using this

feature, the designer will have the ability to study the complex three-dimensional kinetics of

the bearing in close detail. The technology developed in this study can be applied to display

results of thermal and stress analysis of bearings to supplement the dynamic analysis of the

bearing. During this study various informational displays were developed to present "non-

geometric" data such as cage loads and contact stresses. The software developed demonstrated

that development of three-dimensional animation software for postprocessing of dynamic

analysis is both feasible and a great technical advantage for a bearing designer.

The performance and life of bearings in rotating machinery is often the life limiting

factor in many applications. The development of advanced bearing dynamic codes, such as

ADORE, has given the designer a powerful capability to determine the cause of bearing anomalies

and to optimize the bearing design for maximum life and reliable performance. The research

performed has shown that graphical postprocessing of analysis results is the logical next step

for advancement of bearing design technology. The software will greatly enhance utilization of

dynamic analysis in the design process, as well as providing the designer with new tools to study

the complex dynamic phenomenon occurring in high speed rolling element bearings.
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2.0 SUMMARY

During this study, software was developed which could utilize the output from a bearing

dynamic analysis to generate an animation of the operating bearing. The BDAA (Bearing

Dynamic Analysis Animator) software can be used to view the motions and interactions of the

various bearing components. The software also has additional displays for presenting specific

performance data simultaneously along with the animation. The code facilitates review and

comprehension of dynamic analysis results by presenting the data in a clear graphical format.

Development of this capability involved reviewing the output from an ADORE dynamic

analysis, creating software to obtain the data needed for animation, and creating software to

graphically display the data. Two programs were developed to extract the data and prepare input

for the animation algorithm. One program was developed to read analysis results from the

output file generated by ADORE. A second program converts the analysis results into the format
required by the animation program. A third program, BDAA, displays the motions of the bearing

components as an animation or frame-by-frame for detailed review. These programs were
written in FORTRAN to maintain maximum machine independence. Machine independence was

demonstrated by converting portions of the code to run on a personal computer.

The software includes various informational displays that were developed to present data

on various operational characteristics of the bearing. These displays present additional data

that cannot be reviewed by simply viewing the animation. Displays were developed to show; the
magnitude of contact stress in the ball to race contacts, the contact area geometry, the

magnitude/direction of cage to ball forces, and the magnitude/direction of cage to race forces.

The quantitative data displays complement the qualitative animation to present the designer with

an overall characterization of bearing performance.

Different approaches for creating the animation were investigated. The animation

technique selected utilizes bit map graphics to create the animation. Using this technique each

screen can be created and stored in computer memory. The screens are recalled from memory

and displayed sequentially to produce the animation. This approach allows the "number

crunching" required to generate each screen to be performed prior to displaying the animation.
Implementation of this approach means that the complexity of the calculations required to

generate the screen do not affect the animation display rate. Therefore, the screens can be very

detailed and still be displayed quick enough to create an animation.
The code developed for this effort displays the rolling elements in 3-D and the races and

cage are displayed in 2-D. The BDAA code was used to review results from several dynamic

3



analyses of ball bearings. It was found that this graphical postprocessing greatly supports

utilization of dynamic analysis to improve understaning of bearing operating characteristics.

The feasibility of expanding the capabilities of the code to incorporate complete 3-D

graphics and to display additional bearing performance characteristics was investigated. It was

determined that these capabilities could be incorporated into the code provided bit map graphics

were used for the animation algorithm. Future development of a complete 3-D version coupled

with the creation of additional informational displays will result in the development of a

powerful bearing design tool to support dynamic analysis of rolling element bearings.

4



3.0 DEVELOPMENT OF BEARING ANALYSIS/ANIMATION CODE INTERFACE

The bearing animation software developed during this study was developed as a

postprocessor for displaying the results from dynamic simulation of an operating bearing. For

this study, it was decided to create the animation software to be compatible with the Advanced

Dynamics of Rolling Elements (ADORE) bearing dynamics code. This code represents the

4 current state-of-the-art in bearing dynamic analysis and is widely used throughout the bearing

design community. Therefore, it was necessary to create a software interface to extract the data

needed to draw the bearing components and animate their motion from the simulation code

output. The interface code also converts the data to a format suitable for use by the animation

program. The following sections describe the methods and software developed to perform this

task.

3.1 Evaluation and Review of ADORE Output Dataset

Animation of bearing dynamic performance involves at least three steps: simulation of

the bearing using a bearing dynamics code, interpretation of the analysis results to convert the

data into a format suitable for graphical display, and graphical display using software developed

for this purpose. For this effort, it was decided to utilize data from the ADORE bearing

simulation to develop a demonstration of the bearing animation software. Therefore, it was

necessary to review in detail the output from ADORE and to write software which is capable of

interpreting the output from an ADORE analysis and generating a file containing appropriate

input for the animation code.

During the initial phase of this study, the output files from an ADORE bearing simulation

were downloaded to a VAX computer for review. The objective of the review was to determine

which data in the output files are needed for the animation. The ADORE software generates

several output files that are available at the completion of an analysis. The output files consist

of a main printed results file, from one to six plot data output files, and additional files required

to restart and continue the analysis. It was determined that the data required for the animation

could be obtained from the main "PRINT" output file.

The print file consists of two types of output: bearing geometry data which are constant

and are output only once at the beginning of the file, and time step data which are output at user

spE ified intervals throughout the solution. The dimensions for each of the bearing elements

(inner race, outer race, cage, and rolling elements) can be obtained from the bearing geometry

data. These geometry data are used to construct a graphical representation of each of the bearing

elements. The size of the bearing is scaled to utilize the full screen. The time step data contain

position data for each of the elements at each output solution step. The position data determine

5



where on the screen the bearing elements are placed at a particular time. Additionally, the time

step output contains various "nongeometric" operating characteristics of the bearing which are

important for evaluating the bearing performance. Figure 3.1 shows the types of data that are

used by the postpocessor.

ANIMATION DATA REQUIREMENTS

GEOMETRY DATA TO DEFINE EACH BEARING COMPONENT
(ROLLING ELEMENTS, RACES, AND CAGE)

MASS CENTER POSITION VS. TIME FOR EACH COMPONENT

ANGULAR ORIENTATION VS. TIME FOR EACH COMPONENT

BEARING OPERATING CHARACTERISTICS

N' LOADS ", DATA TYPE CURRENTLY USED
(OTHER DATA TYPES CAN BE

", CONTACT ANGLES READILY ACQUIRED USING
THE SOFTWARE THAT HAS

", CONTACT STRESS BEEN DEVELOPED)

N, HERTZIAN CONTACT GEOMETRY

• SLIP VELOCITIES

* LUBRICANT PARAMETERS

WEAR RATES

* HEAT GENERATION

OTHERS

FIGURE 3.1 DATA EXiRACTED FROM PRINT FILE

During the preliminary phase of this study, the Print file was examined to "map" the

location of each data item needed as input by the graphical postprocessor. Software was then

written to read the print file generated by an ADORE analysis and extract needed data for use by

the animation code.

3.2 Development of Interfacing Software

The software developed to interface the animation code to output from an ADORE analysis

performs two functions. First, the data have to be extracted from the print file. After

extraction, further processing is required to convert the raw data into the format required by

6



the animation code. These two steps are performed by the interface programs GETDATA and RD-

GR-DAT that were developed for this effort.
These programs are written in FORTRAN and they perform several functions required to

convert output from an ADORE analysis into a graphical model of the operating bearing. Figure

3.2 shows the data flow from the ADORE output file "PRINT" to the file "AP-GRAPH.DAT °. The

program GETDATA is a generic program that can extract alphanumeric data from any field in an

ASCII computer file. GETDATA can work directly with the output file generated by ADORE. To

use GETDATA a template is set up that tells the program where in the "PRINT" file important

data is written. Important data include bearing geometry (number of rolling elements, pitch

diameter, etc.), boundary conditions (applied loads, etc.) and analysis results (rolling element

positions, reaction forces, etc.). These data extracted by GETDATA are output in a condensed

format to the file

"GRAPH.DAT" for further

processing. A template

must be set up for each Generic
bearing type. During this C'

study a template was set PROGRAM

up for ball bearings. In GETDATA
(DATAFILE)(DATA FILE)future efforts, templates (PROGRAM)

will be created for the Program GETDATA

additional bearing types - Reads data from simulation output file
m Extracts raw data needed for graphics program
m Outputs data to condensed file GRAPH.DAT

ball bearing template

will also be modified to Specific to Application
extract the additional

geometry and position PROGRAM

data needed to define the (A RD-GR-DAT A APFILAT

races and cage in 3-D. (PROGRAM)
Program RD-GR-DAT

GETDATA was written in a P RdGRDAT*Reads GRAPH.DAT A
very generic format, • Performs calculations to obtain translations and rotations

needed for graphics program
therefore up-grading for File AP-GRAPH.DAT is the input file for the
future efforts will graphics program

involve little effort. The

second program in the FIGURE 3.2 DATA FLOW FOR ADORE TO ANIMATION INTERFACE

ADORE/animation in-

terface is RD-GR-DAT.
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This program performs processing on the raw data extracted from ADORE in order to convert

the data into a format usable by the animation program. The majority of the data processing

involves coordinate transformations to define all of the bearing components in a common

reference coordinate system. ADORE uses many different coordinate frames to improve the

computational efficiency of the code. The graphics program requires that each object in the

animation be described in terms of an X, Y, and Z translation from a common reference

coordinate system and an X, Y, and Z rotation about its own mass center. Figure 3.3 illustrates o

the transformations performed by RD-GR-DAT for each 3-D ball bearing rolling element. In

continuing efforts, new routines will be developed to process ADORE output for the various

types roller bearings modeled by ADORE. Also, the ball bearing routine will be upgraded to

accommodate 3-D modeling of the races and cage.

The final product of the ADORE/animation interface is the file AP-GRAPH.DAT. This file

contains, in a condensed format, the basic geometry data needed to draw each component of the

bearing (i.e., race dimensions, rolling element dimensions, cage configuration, etc.). It also

contains the location and orientation of each component for each time step in the ADORE output.

AP-GRAPH.DAT serves as the input file for the animation program.

bf: ROLLING ELEMENT FIXED COORDINATE SYSTEM z
a - ROLLING ELEMENT AZIMUTH COORDINATE SYSTEM

Race Mass

RadiuFrTo Outer

EA Y Tran$latn From Outer
Raeeter Race Mass Certer

Dals Desolbing Rollng Element Position In Adore; Orbita Po61or. Data Needed For Animation; Translaons X,Y.Z And RotatiOns About
Orial Angle, Rotation Angles Theta & Phi, And PRation About Ball XY. And Z
Fixed X-axis

FIGURE 3.3 EXAMPLE OF DYNAMIC ANALYSIS OUTPUT CONVERSION FOR
GRAPHICS PROGRAM BY RD-GR-DAT
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The coordinate transformations performed by RD-GR-DAT utilize the data extracted
from ADORE by GETDATA to calculate the translations and rotations of each bearing component

(balls, races, and cage) from a fixed reference. The reference coordinate system used by the
animation program is the same as the outer race coordinate system used in ADORE. Therefore,
the location and orientation of each component are generated for animation in terms of delta-y
and delta-z from the geometric center of the outer race and rotations about its own mass center.
Calculating these rotations and translations can be performed through relatively simple
transformation equations developed for each component.

The following descriptions and illustrations document which ADORE output data are used

to draw the components and which data are used to calculate the component position and
orientation. The data required for drawing and animating these inner and outer races are
straight forward and can easily be extracted from the print file. Figure 3.4 illustrates how
ADORE data is used to define the graphical features of the outer race.

Pitch Diameter. Ball Diameter
and Dia Play are Read from
Bearing Geometry

OD = BEARING OD
do = Pitch Diameter + Ball Diameter + 1/2 DIA Play

dio a do - 2 x shoulder height of outer race

Note: The shoulder height parameter is not included in the output from ADORE.
Therefore, the user must enter this data manually.

Note: Outer race always has its mass center at center of the screen

FIGURE 3.4 DATA REQUIRED TO DRAW THE BEARING OUTER RACE
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The features needed to display the race from an axial prospective include the outer and inner

diameters (OD, dio) of the race and the bottom of the raceway groove (do). The bearing outer

diameter can be read directly from the analysis output. However, the inner diameter and grove

depth are not listed in the output file, but they may be calculated using the pitch diameter, ball

diameter, and diametrical play. The outer race coordinate system coincides with the animation

coordinate system; therefore, the race remains fixed during the animation. Thus, no

translations need to be calculated for the outer race. The outer race is placed at the center of the

screen for animation. Figure 3.5 illustrates the data needed to draw the inner race and to locate

the inner race mass center with respect to the inertial coordinate system. The inner race

features, when viewed from an axial prospective, include the bearing bore diameter (shaft OD),

the inner race outer diameter (dio) and bottom of the raceway groove (di). The translations of

the inner race with respect to the outer race are calculated using the ADORE output for the inner

race orbital and radial mass center position at each output integration step. The rotation of the

inner race about its own mass center is equivalent to the shaft rotation output by ADORE.

Position and rotation data are updated at each time step during the animation.

Ttie procedure for locating the cage mass center and cage orbital position is similar to

the procedure for describing the position of the inner race. The cage inner diameter, outer

diameter, and land diameter are read directly from the bearing geometry data. The cage

rotation, orbital angle, and orbital radius are read from the integration step output and updated

at each animation step. Thus, the Y and Z translations are calculated using the same method

described for the inner race. The data needed to draw the individual cage segments is illustrated

in Figure 3.6. The number of rolling elements and the ball pocket diameter are used in

conjunction with cage diameter data to define the cage segments. Cylindrical cage pockets are

modeled. The data and procedure for generating the cage segments are described in the

illustration. The animation program uses this data to generate a graphical model of the visible

cage segments. The cage is then drawn by the animation code in the proper location and

orientation at each animation time step.

The data needed to animate the rolling elements are also extracted and processed by the

intprface codes GETDATA and RD-GR-DAT. The initial plans for the Phase I animation called for

a 2-D representation of the ball. However, after investigating different approaches and

possible visual cues to demonstrate the ball motion in 2-D no satisfactory method was

determined. Therefore, it was decided to develop a 3-D spherical representation of the rolling

elements. Using this approach the complex 3-D motion of the ball can be accurately portrayed

in animation. The 3-D approach also directly supports proposed enhancement to the code to

model the entire bearing in 3-D. The data needed to locate and orient the 3-D ball are

illustrated in Figures 3.7 and 3.8. Figure 3.7 shows which data are extracted from the print

10



a irmc - inner race mass
center orbital position dio - di + 2 x Shoulder Height IR
(Section 2 output)

di- Pitch diameter - Ball
Diameter - 1/2 Diametricalz" Play

Pitch diameter, ball
diameter, shaft OD, Shaft OD
and diametrical
play are read from Outer Race Y
bearing geometry cente
data. Inner Race
airmc & Rirmc are Cente
read from Section 2 Rirmc - inner race massinreafoetion 
data center radial position

(Section 2 output)

Use a irmc and Rirmc to find the mass center

z translations for the inner race

Zi AY* = - Rimc x sin(a irmc)
A i A* = Rimc x cospxirmc)

----- * must recalculate at each
a irmc 0, y time step

AZ Rimc

Note: User must enter shoulder height, (his value is not in the ADORE output

FIGURE 3.5 DATA TO DRAW THE INNER RACE AND DATA
FOR INNER RACE MASS CENTER LOCATION
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-~a3
hO

oAA

a2 R 4

STEPS TO DRAW THE CAGE

NOTE: Cage is drawn with cage pocket
1 on center at a = 0 then the cage is
translated and rotated into the proper
position.

1) Solve Fora l, a2, c3, & ox4
at = sin' (Dbp / (2 Ro))
(x2 = sin' (Dbp / (2 Ri))
a3 = (360 / NB) - 2al
a4 = (360 / NB)- 2a2
Dbp = Diameter Of The Ball Pocket
Ro = The Cage Outer Diameter
Ri = The Cage Inner Diameter
NB = Number Of Balls

2) Draw Outer Arc Segments With Radius Ro

3) Draw Inner Arc Segments With Radius Ri

4) Connect Arc Segments With Straight Lines

5) Repeat NB Times Adding Angle NB/360 Each Increment

6) Rotate and Translate Cage To Proper Position

FIGURE 3.6 DATA TO DRAW CAGE SEGMENTS
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+ Inner Race Curvature Center

A Outer Race Curvature Center

o to CnD

xi Distance From Ball Center
To Outer Race Curvature Center

rZ

z

STEPS TO FIND BALL POSITION FOR EACH BALL

ax = Outer Race Contact Angle
Soi = Contact Deflection At Outer Race/Ball Contact
fo = Outer Race Curvature Factor
r = (pitch diameter + ball diameter + .5 * diametrical play) . .5
D = Ball Diameter
axbi = Ball Orbital Angle Output From Print File Za Ball

Zai Azimuth

Coordinates

1) Solve For Xi Ya N Ya

Xi = cos a (fo- .5)D + boi

2) Solve For Ri at bi

Ri = r - f' (D) + xi 
i

3) Translate Ball To Orbital Position AZ Z

Ay = -Ri sin bi| Outer Race

Az = Ri cos ozbi Fixed Axis

Y

Note: Ball Radial Position Is Not Output Directly In Print
File, However, The Position Can Be Obtained Using Steps -0-Ay
1 &2

FIGURE 3.7 DATA TO CALCULATE BALL TRANSLATIONS
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file and how it is used to determine the location of the ball mass center. The orbital angle for

each ball can be read directly from the print output. The radius to the ball position must be

determined from other data. The radius which describes the ball position is the radius from the

outer race geometric center to the ball mass center. This choice is for convenience since the

outer race is either fixed or has a prescribed motion. For each ball, at each time step, the

radial distance from the ball center of mass to the outer race curvature center is calculated.

Once this distance is determined the distance from the ball center to the outer race center can be

determined as shown in the figure. By calculating the ball position in this manner, the

variations in orbital radius which occur as a function of contact angle are accurately reflected

in the animation.

Figure 3.8 shows the data used to orient the angular position of the ball once its position

in space is determined. To determine the orientation, the angles Theta and Phi are read from

the print file. These angles represent rotations about the ball azimuth coordinates. These

rotations are then converted into rotations in the display coordinates. Once the ball is oriented,

an additional rotation is performed about the ball-fixed x-axis. This rotation represents the

rolling of the ball. Each sphere is graphically represented in 3-D by displaying longitudinal

lines on the surface of the ball. The intersection of these lines occurs along the ball-fixed ±x

axis. During the animation, the motion of the intersection point clearly shows the complex 3-D

ball movement. This feature is further described in Section 4.1.

The programs GETDATA and RD-GR-DAT constitute the interface between the dynamic

simulation and the graphical postprocessor. To view the bearing animation the user must first

perform a simulation of the bearing using ADORE. The "print" file generated by ADORE must

then bA transferred to the workstation or personal computer where the animation software is

installed. The programs GETDATA and RD-GR-DAT are then executed. These programs read the

print file and generate an input file for the animation code. The animation code can then be

executed to view the operating characteristics of the bearing in the form of an animation or

step-by-step for detailed study. The process is relatively simple and can be performed quickly.

To further simplify the process, the programs could easily be combined in a batch file or a

single executable file. However, for this study the programs were maintained independently to

modularize the code for increased flexibility. The animation software developed during this

study could easily be converted to animate results from simulation of any dynamic process. All

that is required to utilize the graphics code to animate new processes is to create a new version

of RD-GR-DAT. The GETDATA program is generic and could be used to extract data from any

ASCII output file generated by a dynamic simulation.
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za

Xbf

ya

w

CONVERSION OF BALL POSITION Xbf Ball Fixed X Axis
ANGLES TO DISPLAY ROTAION
ANGLES R Unit Vector Along Ball

xa Fixed X Axis
1) solve for: I= II cos 0

r =IRI sin 0
h =r cos 0
w r sin 0

Xbf
2) solve for: ca = tan1 (h/I)

= tan' (w/I)

ROTATION ANGLES FOR DISPLAY

3)*Ball Is Traslated To Correct
Orbital and Radial Positions

4) Ball Is Rotated To Correct
Orientation By Appling a and
p Rotations

5) Ball Is Rotated About Its Fixed
X Axis

FIGURE 3.8 DATA TO ORIENT BALL ANGULAR POSITION
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4.0 DEVELOPMENT OF ANIMATION SOFTWARE

The animation software has been developed to serve as a design tool for bearing

engineers. The software presents bearing performance data and operating characteristics in a

clear and concise graphical format. Typically, the output from dynamic analysis consists of

discrete values for individual parameters output at specified time intervals throughout the

simulation. The format of the output is usually tables of numbers or plots of specific

parameters vs. time. From this output the user must determine how specific parameters are

related by constructing a mental image of the motions and interactions occurring in the bearing.

The animation software presents the data graphically, updating all of the parameters

simultaneously, in the form of a slow speed motion picture. This allows the user to directly

view how the various bearing components are interacting. This capability greatly complements

utilization of the output generated by dynamic analysis to design bearings or investigate

anomalies which may occur during bearing operation. The following sections describe the

various features of the software and the techniques used to develop the code.

4.1 Animation Code Display Features

During this study, an operational prototype of the bearing animation software was

developed. The program is written in FORTRAN and is operational on an Apollo workstation.

Figure 4.1 illustrates the layout and features of the screen as it currently exists. The bearing

display utilizes the largest portion of the screen. The inner and outer races of the bearing can

be represented as simple cylinders when viewed from an axial prospective. An additional ring

is displayed for each race which represents the portion of the race from the bottom of the groove

to Ihe shoulder height of the bearing. The main portion of the race ring and the exposed portion

of the groove are displayed in different colors. Therefore, the changes in contact angle of the

ball as it orbits can be observed by viewing the amount of the groove color displayed under the

ball. The cage segments are displayed in their true relative position with respect to the balls

and races. The motiens of the cage and inner race are highlighted by mass center position

indicators. The motion of these indicators is scaled to exaggerate the motion for better viewing.

The 3-D balls are illustrated as spheres with longitudinal lines to indicate angular orientation.

Each ball has a number associated with it and these numbers are displayed on the screen and

move with the balls. The numbers are used to cross reference to the other graphical displays on

the screen. For example, the ball/cage contact force is shown on the lower left corner of this

display. The bar graph shows the magnitude of ball/cage contact forces as a function of time. By

watching this graph, the user can determine if cage-to-ball interactions are occurring in an

orderly pattern or if they are more random. Watching the changes in magnitude of the bars is
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useful for helping to determine if the cage is in a stable or an unstable operating condition. The

color of the bars on the graph change to indicate whether the contact represents the ball driving

the cage or the cage driving the ball. Each bar on the graph has a contact angle indicator which

is displayed above the bar. This indicator gives a more precise indication of the ball contact

angle within the cage pocket. A similar bar chart and contact angle indicator are displayed on

the lower right hand corner of the screen for the cage/guide land contact force and angle.

The animation code also includes an optional display to present Hertzian contact stresses

in the ball to race interfaces. The user has the option of displaying stresses for any of the

rolling elements. The display generates a 3-D surface representing the magnitude of stress at

any point in the contact ellipse. The outer race contact ellipse is displayed in the upper half of

the display and the inner race contact is displayed in the lower half of the display. The user may

specify any viewing orientation to examine the surface. The default is an edge on view in the left

half of the display and a top down view in the right half of the screen. The magnitude of the

stress is displayed with color contours.

Control of program features is via menu commands that can be selected with a mouse.

The mouse commands allow the user to choose various optional information displays. Commands

are also provided for viewing the display as a continuous animation or frame-by-frame. The

frame-by-frame option allows forward and backward stepping for studying the bearing motion

in detail. The animation features allow the user to continuously view the motion from the start

of the simulation to the end. This allows velocity variation in the components to be observed and

enhances overall comprehension of the dynamic interactions occurring in the bearing.

4.2 Animation Software Development

During the initial phase of this study, it was decided to utilize an Apollo 9000 Series

400-T workstation for development of the software. High level programming of the code was

done using FORTRAN. This approach was chosen to allow for utilization of the graphics code

development tools available on the workstation while maintaining maximum machine

independence by using a standard high level language such as FORTRAN. The mathematics and

data manipulation routines have all be developed in FORTRAN. The graphical output to the

screen is performed using FORTRAN calls to graphics primitive routines in the system library.

These routines perform simple graphics functions such as drawing a line between two specified

points or filling a polygon defined by an array of points. The FORTRAN code that was developed

can create all of the graphics needed to animate the bearing operation by using repetitive calls to

a few simple graphics primitives. Most computer systems have similar graphics libraries that

can be accessed from standard FORTRAN codes. For example, portions of the code developed for

this effort were transferred to an IBM compatible personal computer and compiled using the
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Lahey EM-32 FORTRAN compiler and graphics libraries. This exercise demonstrated that
graphics software developed using this approach can be created in a relatively machine
independent form while still maintaining the graphics capabilities to generate the 3-D

animations.

Developing the g.aphical display capabilities, required to create an animation from
dynamic analysis output, involved two major steps. First, each component of the bearing must
be mathematically described in 3-D space by defining the coordinates of points on the surface of
the component. The next step is to calculate the projection of the components, as defined by the
surface points, onto a 2-D plane for display on the monitor. Figure 4.2 illustrates the
relationship between the 3-D mathematical model, the screen projection, and the viewer. The
graphics routines allow the code to manipulate the image to display the bearirng in many
different ways. The animation code includes rotation and translation routines that manipulate
the mathematical model of the bearing components to change the orientation and location of the
object in space. Similar routines can be used to vary the distanca between the bearing
components and the screen and the position of the viewer. However, the software developed in
this effort was limited to viewing the bearing from an axial prospective only. Therefore, the
viewpoint and distance from the bearing to the screen are fixed and chosen to optimize the

display from this prospective.

Z4

Component

FIGURE 4.2 RELATIONSHIP OF THE 3-D GRAPHICAL MODEL,
THE SCREEN, AND THE VIEWER
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The Bearing Dynamic Analysis Animator (BDAA) code creates the 3-D mathematical

model in two steps. First, the interface codes extract mass center position data, orientation

data, and geometry data for each compooient of the bearing from an ADORE output file. The mass

center coordinates are con'.erted into X, Y, and Z coordinates in a reference coordinate system

that has the Y- Z plane defined in the outer race plane and the X coordinate projects axially from

the bearing. The position and orientation data defines where in this 3-D coordinate system each

component is located. The geometry data (ball radius, race O.D. and I.D., etc.) is then used to

generate an array of points located on the surface of each of the bearing components. Graphical

images of the components can then be created by drawing gridlines between the points defining

the surfaces. Solids are modeled by using a polygon filling routine to fill the surfaces defined by

the points with color.

During this study, FORTRAN routines were developed for 3-D rotations and translations

of surface definition points. These routines are implemented to model the balls in a ball bearing

in 3-D. To rotate or r, ove a bearing component to a new orientation in space, the FORTRAN

routines are applied to each point defining a component surface on a point-by-point basis. As

illustrateo below new values are calculated for each p in, rv' .:,cessive multiplication by the

desired transformation matrix:

[X'Y'Zi 1] = [Xi Yi Z, Ij r, [ Ti

The fourth coordinate is called a homogeneous coordinate and it is included only because it helps

do some of the transformation-, more efficiently. Each of the transformation matrices pefforms

a rotation about one of the coordinate axis or a translation along one of the axis. By sequentially

applying these transformations the bearing components can be redrawn in any new position.

The transformations are applied on a point-by-point basis. Therefore, the routines developed

for this study can be used directly in future efforts involving 3-D modeling of all of the bearing

components.

The major upgrade required for a full 3-D implementation is modifying the routines

that generate the surfaces to include the entire bearing. In the current version only the parts of

a ball bearing, as viewed from an axial prospective were generated. Figure 4.3 illustrates how

allowing a user definable prospective increases the number of surfaces that are required for a

solid model. In this study the races were displayed as 2-D disks. For user definable

prospectives, all of the surfaces of the 3-D races and cage will be generated. H, -ever, it should

be noted that the current software models all of the surfaces in 3-D. In other words, with the

existing software, is is possible to rotate the view and see the bearing as illustrated in Figure

4.3-A Therefore, the same software can be used for full 3-D modeling, but it will have to be
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upgraded to utilize new data extracted by the ADORE interface to create the additional surfaces

not currently neede.' for the axial prospective only version of BDAA.

Reviewing Figure 4.3-B it can be

seen that some of the surfaces defining ,

bearing component are not be visible when

viewed from an arbitrary prospective. The

* graphics code m,,st have provisions for

identifying the surfaces which are not

visible. The techniques for identifying these

surfaces are called hidden line removal

procedures. Failure to remove the hidden

surfaces results in an X-ray image being

projected on the screen. This is confusing

and unacceptable for a graphical

postprocessor. For this effort a hidden line A -Phase I graphical B - Phase II graphical
removal routine was created based on the representation of representation of

painters algorithym. The painters routine a ball bearing a ball bearing

draws objects by starting with the object inner race inner race

furthermost from the viewer and then

progressively "paints" the screen outward FIGURE 4.3 ILLUSTRATION OF NEW SURFACES

towards the viewer, as a result, objects in REQUIRED TO ALLOW 3D VIEWS FROM
ANY PERSPECTIVE

the background get covered by the fore-

ground image. In the axial view only version BDAA large areas such as the entire face of a race

could be defined as a surface. However, for full 3-D viewing capability it will be required to

define surfaces in much more detail. To accomplish this the number of polygons used to define a

surface will be increased to achieve the resolution needed. Another advantage of using small

polygons to define the surface is that the coordinates of each polygon can be used to calculate a

normal vector to the surface. The normal vector can be used to determine the orientation

between the surface and viewer or between the surface and a simulated light source. Color

shading can then be used to enhance the 3-D effect.
The graphical display software developed during this study allows each of the bearing

components to be drawn and displayed on the monitor in any arbitrary location and orientation.

However, additional programming was required to generate an animation, thus, allowing the

user to view the motion of the bearing components. Animating the bearing motion involves

creating a new display screen for each integration step output from the dynamic simulation.

Each display screen is updated with new position and orientation data, for each component,
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extracted from the simulation output. Thus, each screen represents a small increment in time.

The screens are displayed sequentially to create the animation. If the screens are displayed

rapidly enough, the mind perceives the series of discrete images as smooth motion. However, if

the display rate is too slow, the individual images are noticed and the motion becomes jerky.

Therefore, to achieve acceptable animation the software must be capable of updating the screen

very rapidly.

During this study two animation algorithyms were developed and evaluated. These

algorithyms are illustrated schematically in Figure 4.4. The first and simplest approach to

animating the bearing motion is to read position data for a time step, create a display screen for

this time step, display the screen for a specified amount of time, and then repeat the process for

the next time step. The drawback to this approach is that the calculations required to create the

display screen must be performed in the short time period between the display of each

individual screen. The more detailed the screen becomes the less feasible this approach. During

this study, it was fourd that this approach could be successfully utilized for the relatively

simple graphics screens required when the viewing prospective is limited to an axial view.

This is b:sed on running the software on a relatively fast workstation. On a slower computer

this approach might not be acceptable even for an axial view. As screen detail is increased the

calculations required to update the screen become more time consuming thus reducing the

capability of the computer to generate new screens fast enough for smooth animation. Thus,

with the objective of creating more detailed 3-D animations in the future, an alternative

animation routine was developed.

The animation algorithym ultimately implemented in the BDAA code utilizes bit mapping

and bit map storage techniques to improve the display rate capability of the animation. Bit maps

are binary representations of the screen which define the colors displayed at each individual

pixel of the display screen. Bit maps can be manipulated like files on a computer and stored in

computer RAM memory or on disk memory. Using bit map storage it is possible to perform all

of the calculations needed to create each screen prior to displaying any of the screens. The bit

map algorithym involves reading position data for each time step, creating the display Screen

for this time step, storing the screen as a bit map, and repeating the process until all of the

animation frames have been created and stored. Once the screens are stored they can be recalled

and displayed rapidly regardless of the computation time required to generate the screens. To

view the bearing analysis results the code pages through the stored screens sequentially. The

level of detail in the bit maps does not affect the rate at which the screens can be displayed.

Therefore, the level of detail can be increased to any level required to display the engineering

data needed by the user. The amount of detail is limited only by the amount of memory installed
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2) Calculate Screen Coordinates Screen i+1 X2Y2

for Individual Points Used
to Graphically Define Objects l YX

3) Draw the Projection of the
Object on the Graphics Screen

IScreen N •S xi "

Schematic of Initial Phase I Graphics Algorithm x3Y3 z X2 Y2
(Increasing Detail Decreases the Rate at which
Frames can be Reviewed)

K Analysis Results
Stored on Compiler Screen i x2Y2

[CUXlylz_ X3)Y3

1) Determine Object(s) Orientation
" in Space from Dynamic Screeni+1 X 2Y2

Analysis Results for Time S +1
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2) Calculate Screen Coordinates x 3 Y3/
for Individual Points Used _3

to Graphically Define Objects
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3 -1Y3--  
2 Y2
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Stored as Bit Maps

Schematic of Current Phase I Graphics Algorithm
(Increasing Detail has No Effect on Frame Rate Display)

FIGURE 4.4 ANIMATION ALGORITHYMS DEVELOPED
TO DISPLAY BEARING MOTION
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in the computer and the resolution of the display. It is anticipated that using the bit map

approach for animation will be required for future full 3-D implementations of the BDAA code.

4.3 Incorporation of an Interpolation Routine to View Dynamic Simulations

with Accurate Velocity Representations

The animation software works by drawing al! of the bearing components, in their proper

relative positions, at each time step output by the simulation. Typically, the illusion of motion

is achieved in an animation by displaying sequential screens at a constant rate. In order for

velocities to be correctly represented, each bit map must represent a uniform time step. On the

other hand, dynamic simulations often use a variable time step in order to maintain accuracy

and minimize computer run time. Typically, output from the simulation is obtained at specified

integration steps during the analysis and the time increment between these output can vary as

the analysis progresses. Figure 4.5 illustrates how the time increment between integration

steps can vary as the sLnulation progresses. The initial animation developed did not compensate

for the changing time steps resulting in jerky animation. The inner race appeared to speed up

and slow down when in reality it was rotating with constant velocity. To correct this problem

two approaches were investigated. Figure 4.6 demonstrates the two techniques for hypothetical

output.

The first approach considered involves changing the display rate between frames of the

animation. To change the display rate a pause function is introduced between screen displays.

The length of the pause is scaled proportionally to represent the time step between two outputs

from the dynamic simulation. A long pause is introduced between two frames that represent a

large time step and no pause is introduced between the two frames representing the smallest

time step in the output.

The alternative approach to using variable frame rates is to create a new set of data by

interpolating between output data points at uniform time steps. The interpolated data can then

be displayed at a constant frame rate without distorting the velocities of the bearing components.

The advantage of the first approach is that the actual data is not varied in any way.

Therefore, the possibility of introducing errors through interpolation is eliminated. However,

using the pause function reduces the maximum rate at which the frames can be displayed. This

could be a significant problem if the simulation output has large variations in time step. The

second approach allows the frames to be displayed at the fastest possible rate. However, it is

possible that interpolation could introduce errors into the results. Based on these pros and cons

it was decided to implement the interpolation method first for evaluation. A subroutine was

created to interpolate between output time steps from ADORE to new uniform time steps. Figure

4.7 illustrates the linear interpolation used to calculate new values for the output parameters.
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The subroutine searches the original data set to find the data points nearest the new uniform

time step. The interpolation routine then interpolates new values and uses the new values to

generate the display screen. Experience using this routine showed that as long as data from the

dynamic model are output frequently enough for animation (at least every 25th integration step

for our test cases), then the interpolation does not distort the data. The routine was

incorporated into the animation software as a user specifiable option. Therefore, the original

data can be viewed in addition to the interpolated data for comparison. Based on the success of t

this routine the pause method was not coded for further evaluation.

4.4 Development of Three-Dimensional Surface Display for Bearing

Animation Software

Throughout development of the bearing animation software, emphasis was placed on

developing features that contribute to making the program a bearing design tool. The animation

alone is a useful tool for reviewing and assimilating data from bearing dynamic analysis.

Viewing the animation gives the user an excellent qualitative understanding of the various

interactions between the bearing elements. The effects of changing various design parameters

can be comparatively accessed by viewing the results from parametric analysis generated with

dynamic bearing simulations. However, the animation alone does not provide all of the

quantitative results that are important for bearing design and performance studies. Therefore,

a considerable portion of this effort was devoted to developing and evaluating various auxiliary

displays that present additional quantitative analysis results and make the software a more

complete design tool.

For example, a three-dimensional surface display has been developed and incorporated

into the bearing animation software. The display can be used to view any bearing parameter that

can be represented as a surface. For evaluation purposes, contact stresses at the inner and

outer rolling element to raceway interactions were displayed. Figure 4.8 illustrates the

ellipsoidal compressive stress surface for a Hertzian point contact. The actual display screen is

shown in Figure 4.9. The interface program RD-GR-DAT was modified to output the maximum

contact stress, semimajor axis, and semiminor axis of the contact ellipse for each of the rolling

e;ements at both races. This data, imported from the ADORE print file, are sufficient to define

the contact stress surface. For display during the animation, the bearing graphics program

determines the stress at uniform grid points throughout the contact ellipse.

The magnitude of stress is treated like a z-coordinate to define a surface. The resulting

three-dimensional surface is displayed by connecting the points on the surface with lines to

form a wire frame grid. The lines are color coded to produce color contours on the surface. The

viewing angle of the surface can be arbitrarily specified by the user. Specifying the viewing
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angle as directly down

the Z axis results in a

conventional two-di-

mensional color contour

plot of the stresses in a

the contact ellipse. __a
The surface

generation routine is

currently functional as
a user specifiable

option in the program.

In the current code, the
surface generation cap- FIGURE 4.8 ELLIPSOIDAL STRESS SURFACE
ability is limited to FOR HER'ZIAN CONTACT

viewing Hertzian con-

tact stresses in the ball

to race contacts. However, in future versions we plan to greatly expand the list of various

parameters that can be displayed using this routine. Possible parameters for display include

hydrodynamic film thickness, hydrodynamic pressure and friction force distributions,

isothermal contours predicted by thermal analysis, and subsurfaces stress distribution

calculated from stress models.

FIGURE 4.9 ROLLING ELEMENT/RACE HERTZIAN CONTACT
STRESS SURFACE DISPLAY
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5.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The objectives of this research effort were to develop computer graphics software

capable of displaying an animated pictorial of an operating bearing from an axial prospective

and to evaluate the benefits of this capability. Emphasis was placed on determining the

feasibility of extending the capabilities of the software to accommodate full 3-D graphics with

user definable viewing perspectives. The feasibility of incorporating additional bearing

performance characteristics, generated by thermal or stress analysis, was also investigated.

The Bearing Dynamic Analysis Animator (BDAA) code was developed to accomplish these

objectives. The BDAA code provides graphical postprocessing of results obtained from bearing

dynamic simulations performed with ADORE. The code demonstrated the feasibility and

usefulness of this capability. The BDAA software allows the user to visually review the dynamic

interactions of the bearing components as viewed from an axial prospective. It was found that

utilization of the software could improve comprehension of the analysis results and promote

formulation of "user-intuitive" design modifications to improve bearing performance. The

BDAA code was used to review svr- ai analysis data sets for evaluation purposes. It was found

that observing the animation P,. ided an excellent qualitative understanding of the dynamic

operating characteristics of lhe bearing. However, more quantitative data are required to fully

evaluate the suitabil%,, of a particular bearing for operating in a specified environment.

During the study il was found that auxiliary informational displays could be incorporated onto

the data display screen to present quantitative data along with the animation. The BDAA software

includes displays developed to display cage forces, contact angles, and Hertzian stresses. These

informational displays make it possible to quantitatively evaluate bearing performance. Future

versions of the BDAA code should include additional informational displays to present different

types of bearing performance data. The various displays should be developed as user definable

optihns to allow the user to select specific data of interest for presentation. Data types that

coild be displayed include contact force, contact stress, contact geometry, fim thickness, slip

velocity, heat generation, wear rate, velocity vectors, and other data.

The BDAA code was developed on an Apollo workstation. The workstation provides an

excellent environment for code development. The Apollo has advanced debugging routines and
program development tools which expedite code development. However, one of the objectives of

this study was to create the software to be as machine independent as possible. This objective

was achieved by using a high level programming language (FORTRAN) to create the code. Screen

drawing functions are performed with FORTRAN calls to a graphics library. It has been

recommended that future versions of this code be developed for compatibility with IBM

compatible personal computers. The availability of these machines would make utilization of
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the code available to the maximum number of users. The feasibility of this option was

demonstrated by converting portions of the BDAA code to run on a personal computer. Figure

5.1 illustrates the resolution achieved with the PC version. Based on the experience gained

during this study and the success in converting the code to PC compatibility, it is recommended

that this code development approach be followed for future versions of BDAA.

Throughout development of the BDAA code the objective of creating a full 3-D version of

the software with user definable viewing perspectives was considered. The coordinate

transformations used to describe the points that define the surfaces of the bearing components

for display are capable of 3-D rotations and transformations. Therefore, no major technical

obstacles are anticipated for developing a complete 3-D version of BDAA. However, the 3-D

conversion will require an extensive code development effort to accomplish the "bookkeeping"

duties required to track and manipulate the greatly increased number of points and surfaces

required to define the bearing in 3-D. The fact that many more surface points are required for

a complete 3-D graphical bearing model will result in a significant increase in the amount of

computational time required to generate each frame of the animation. However, the bit map

animation routine developed for this study allows the software to generate all of the screens

prior to displaying the animation. Therefore, computational speed of the computer should not be

a limiliny factor for creating a 3-D version. The capability for 3-D viewing will allow the

user to investigate the complex six-degree-of-freedom motions of the bearing in much more

detail than is possible with the axial view only version of the code. Therefore, it is

recommended that development of a full 3-D version of the code be pursued in the future.

FIGURE 5.1 BEARING GRAPHICS SCREEN ON A COMPAQ PC WITH VGA GRAPHICS
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Utilization of bit mapping graphics techniques in the BDAA code provides an additional

benefit which may be exploited in future versions of the code. The display rate for displaying a

bit map depends on the size of the portion of the screen defined not on the level of detail of the

picture within that area. Therefore, it is possible to generate high levels of graphical detail on

the bearing components without substantially slowing the maximum display rate. High levels of

detail make it possible to display color contours or other shading techniques to present

additional data during the animation. The capability to display bearing characteristics such as

temperatures and stresses would strongly complement the current capabilities of the code. It is

anticipated that displaying this type of analysis results could be accomplished using bit map

graphics. The major effort required to develop this capability involves the integration of

additional analysis results (such as temperature or stress gradients) with the results from a

dynamic analysis. Integrating results from different types of analysis will be difficult;

however, it is felt that the benefits of presenting the maximum amount of bearing performance

data in a clear and concise graphical format justify the effort and should be pursued through

further code development.
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